

Onevinn AB

 IPU Installer

Installation and user’s manual

CONTENTS

1. Version ... 3

2. Disclaimer ... 3

3. Description ... 3

4. Background ... 3

5. Content ... 4

6. Concept... 4

7. Hardware inventory .. 5
7.1. Verify extended hw inventory. ... 6

8. Collections .. 7
8.1. Collection specifications ... 7

8.1.1. Windows 10 Build < 20H2 ... 7
8.1.2. IPU Failed .. 8
8.1.3. IPU PendingReboot ... 8
8.1.4. IPU Success ... 8
8.1.5. IPU Windows 10 20H2 x64 .. 8

9. Custom Client Settings .. 9

10. Console PowerShell script .. 10

11. IPU Application .. 11
11.1. Content .. 11
11.2. Application settings ... 12

12. Deployment simple ... 14

13. Deployment advanced ... 15
13.1. Deployment Scheduler description ... 15
13.2. IPUApplication deployment ... 17
13.3. Configuration Deployment Scheduler ... 18

14. Drivers - Standard .. 20

15. Drivers – Advanced .. 21

16. Process .. 22

17. Issues .. 22

18. Finally .. 22
18.1. Support us supporting you. ... 22
18.2. Code ... 23

1. VERSION

2. DISCLAIMER

The methods and implementations described in this document are used entirely at own risk.

3. DESCRIPTION

This document covers the Onevinn IPU Installer, a .Net executable that wraps necessary commands,

logic and processes when using a Configuration Manager Application to apply a Windows feature

update.

As an addition to the <<Installer>> we also wish to introduce our <<DeploymentScheduler>> to the

world, it is still somewhat a beta product due to incomplete testing (primarily not enough, we

consider it stable thou).

4. BACKGROUND

2020 was a challenging year in more than one way, not only did the pandemic impact us all

personally, still does, it also changed many things on a professional level, specifically how people

work. Where “work-from-home” scenarios had previously been edged cases is now the new normal.

We can add to the equation that many companies (customers in our case) have what must be

considered outdated security policies and technical limitation in bandwidth, internet or vpn. Policies

may for example prohibit split-tunneling, thus forcing all traffic through corporate firewalls and

various other infrastructural do-hickeys.

Consequently, old trues are no longer valid and we have had to reconsider the way we approach the

challenge of keeping Windows up to date. A Task sequence is not always the best approach.

Version Author Date Remark

1.0 Johan Schrewelius 2021-02-10 Document created

5. CONTENT

All content needed to implement this solution can be downloaded from:

Onevinn - Featured (schrewelius.it)

6. CONCEPT

This concept utilizes fully patched Windows media; most used tool for constructing and maintaining

such media (.iso) would be OSDBuilder Overview - OSDBuilder (osdeploy.com) by @SeguraOSD, but

there are others. Or you might want to build your own solution based on for example this article:

Update Windows 10 media with Dynamic Update - Windows Deployment | Microsoft Docs

Even thou it might appear slightly unorthodox an Application has many useful properties when it

comes to running In Place Upgrades. It is designed to download and run on the client, it is stateful in

that if the detection method requirements are not met (the correct OS is not installed), it will try

again.

The solution combines fully patched media with the usage of the not known enough possibility to

use an ini-file (SetupConfig.ini) to control the upgrade process. All logic has been wrapped in a .Net

installer called <<IPUInstaller.exe>>, that also gathers SetupDiag results and overall status and

writes it to common location in the registry. This registry location is then inventoried and sent to the

site DB where it can be used for creating membership rule(s) for Collection and reports.

By extending the hardware inventory we can keep good track of the upgrade process even if the

computer should perform the upgrade completely offline, for example on an employees’ kitchen

table. Once the computer gets back online and post a hardware inventory we will learn about its

status.

The rest of this document will describe how to set this up, we will:

• Extend the Hardware Inventory

• Create Collections.

• Create the IPU Application.

• Create a Drivers Task Sequence.

• Deploy the Application in two different ways (with and without the Deployment Scheduler).

When all things are done, we will have an Applications that upgrades Windows and various

collections to store the computers as they change state during the progress. We will also have setup

driver management and learned about Deployment scheduling, with and without 3rd party

assistance.

Reference: Windows Setup Automation Overview | Microsoft Docs

https://onevinn.schrewelius.it/
https://osdbuilder.osdeploy.com/
https://docs.microsoft.com/en-us/windows/deployment/update/media-dynamic-update
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-setup-automation-overview

7. HARDWARE INVENTORY

Extending the hardware inventory for the IPU involves modifying the configuration.mof file which is

a site-wide file in ConfigMgr. Good news is that these days ConfigMgr automatically creates a

backup every time you make an edit, so it is easy to restore if you accidentally make a typo. The

backups are stored in the <ConfigMgrInstallDir>\data\hinvarchive.

1. From the extracted IPU Installer archive, open the HW-Inventory\Configuration.mof file.

2. Copy all the content, and then open the

<ConfigMgrInstallDir>\Inboxes\clifiles.src\hinv\Configuration.mof file.

3. Locate the below section in the end of the file and paste the copied content between the start /

end comments.

//========================
// Added extensions start
//========================

Here goes the content of the provided file (configuration.mof).

//========================
// Added extensions end
//========================

The updated Configuration.mof file.

4. Next step is to import the <<SMS.mof>> to the <<Default Client Settings>>. Navigate to the

Hardware tab, click <<Set Classes>> and Import the file.

5. In the Hardware Inventory node, click Set Classes. Then click Import, browse to the HW-

Inventory\SMS.mof file, and import it with the default settings.

Reference: https://bit.ly/2LF8WwL

7.1. Verify extended hw inventory.

1. After extending the hardware inventory in the preceding steps, pick one of your clients,

force a machine policy update, and then force a hardware inventory.

2. Once the hardware inventory is complete, open Resource Explorer and verify that you have

a new node named IpuResult.

Note: <<Last Status>> will be empty until the upgrade has run.

https://bit.ly/2LF8WwL

8. COLLECTIONS

To keep track of the IPU’s a few collections will have to be created and configured. We recommend

using <<Incremental Update>> on these collections.

1) We will need a Collection with candidates.

2) Status Collections (top 3) and deployment Collection (bottom).

8.1. Collection specifications

8.1.1. Windows 10 Build < 20H2

Limit: All Systems

Query:

select

SMS_R_SYSTEM.ResourceID,SMS_R_SYSTEM.ResourceType,SMS_R_SYSTEM.Name,SMS_R_SYSTEM.

SMSUniqueIdentifier,SMS_R_SYSTEM.ResourceDomainORWorkgroup,SMS_R_SYSTEM.Client from

SMS_R_System inner join SMS_G_System_OPERATING_SYSTEM on

SMS_G_System_OPERATING_SYSTEM.ResourceId = SMS_R_System.ResourceId where

SMS_G_System_OPERATING_SYSTEM.BuildNumber < "19042" and

SMS_G_System_OPERATING_SYSTEM.Caption = "Microsoft Windows 10 Enterprise"

8.1.2. IPU Failed

Limit: All Systems

Query:

select

SMS_R_SYSTEM.ResourceID,SMS_R_SYSTEM.ResourceType,SMS_R_SYSTEM.Name,SMS_R_SYSTEM.

SMSUniqueIdentifier,SMS_R_SYSTEM.ResourceDomainORWorkgroup,SMS_R_SYSTEM.Client from

SMS_R_System inner join SMS_G_System_IpuResult on SMS_G_System_IpuResult.ResourceId =

SMS_R_System.ResourceId where SMS_G_System_IpuResult.LastStatus = "Failure"

8.1.3. IPU PendingReboot

Limit: All Systems

Query:

select

SMS_R_SYSTEM.ResourceID,SMS_R_SYSTEM.ResourceType,SMS_R_SYSTEM.Name,SMS_R_SYSTEM.

SMSUniqueIdentifier,SMS_R_SYSTEM.ResourceDomainORWorkgroup,SMS_R_SYSTEM.Client from

SMS_R_System inner join SMS_G_System_IpuResult on SMS_G_System_IpuResult.ResourceId =

SMS_R_System.ResourceId where SMS_G_System_IpuResult.LastStatus = "PendingReboot"

8.1.4. IPU Success

Limit: All Systems

Query:

select

SMS_R_SYSTEM.ResourceID,SMS_R_SYSTEM.ResourceType,SMS_R_SYSTEM.Name,SMS_R_SYSTEM.

SMSUniqueIdentifier,SMS_R_SYSTEM.ResourceDomainORWorkgroup,SMS_R_SYSTEM.Client from

SMS_R_System inner join SMS_G_System_IpuResult on SMS_G_System_IpuResult.ResourceId =

SMS_R_System.ResourceId where SMS_G_System_IpuResult.LastStatus = "Success"

8.1.5. IPU Windows 10 20H2 x64

Limit: <<Windows 10 Build < 20H2>>

Query: None

Exclude collections:

All three status collections (Failed, Success and Pending reboot):

9. CUSTOM CLIENT SETTINGS

Even though it is not necessary we recommend creating a custom client setting to push hardware

inventory a little bit on a couple of collection.

Navigate to the Client Settings node in the console and create a new Custom Client Device Settings.

Deploy the custom settings as indicated:

This will improve the performance of the solution by delivering faster results.

10. CONSOLE POWERSHELL SCRIPT

Locate the Reset_IPU_Status.ps1 script:

Add it to the Scripts node in the Console, ensure it gets approved by a second admin.

The actual purpose of this script will be clarified later on in the document, in short its used to reset a

status flag in the registry of a machine that has failed to upgrade, giving it a second chance.

11. IPU APPLICATION

Time to create the actual Application.

11.1. Content

Locate the <<IPUApplication>> folder:

Copy the complete folder to your content share (\\server.domain.com\\Share$) and give it a more

meaningful name, indicating version and language. Then copy the entire content of your media (.iso)

to the <<Media>> folder:

SetupComplete, ErrorHandler

Both folders contain a utility called <<RunSilent.exe>> which basically is a command line wrapper for

executing multiple commands sequentially. Put one command per line in the .ini file, separate File

and Arguments with a comma, no blanks around that comma, please!

file://///server.domain.com/Share$

11.2. Application settings

Continue by creating a ConfigMgr Application (manual/scripted), we will focus on all non-default

settings, a complete walkthrough of all dialogs raised by the wizard would simply fill too many pages.

The custom script is in the <<DetectionMethod>> folder.

Remark: The detection script is not signed; consequently, the client policy setting in effect must be

configured with Execution Policy <<Bypass>>.

The first line in the script contains the build-no of the new OS, change as necessary – this manual is

all about 20H2, in which case 19042 is correct.

On the Software Center Tab, add User Category (you will have to create it) <<IPUApplication>>

The category is used by the Deployment Scheduler, that we will invoke later in this document.

Install silent for System, the estimated install time is approximately right.

Remember to distribute the Application.

12. DEPLOYMENT SIMPLE

In this scenario we are not using any additional software or tools to schedule or otherwise control

the upgrade.

Deploy the Application as Required to the Collection name <<IPU Windows 10 20H2 x64>>

Instruct ConfigMgr to install it as soon as possible.

As you can understand this does not give much control over the deployment and when it is run. To

improve the situation, we recommend applying a <<Maintenance Window>> to the Collection.

Remark: <<All deployments>> means exactly that, this will halt all deployments until the time

indicated in the schedule is reached. It is possible to overrule this on a per application / update basis.

Nothing else must be done; put a candite computer in the <<IPU Windows 10 20H2 x64>>

Collection, once the maintenance window occurs, it will be upgraded.

13. DEPLOYMENT ADVANCED

So far, we have only used built-in functionality, apart from the <<IPUInstaller.exe>> that only wraps

standard commands and functionality. To gain better control we need to add a new <<Tool>> to the

equation – The Onevinn Deployment Scheduler.

13.1. Deployment Scheduler description

This tool is designed to allow end users to freely schedule installations and updates. It currently

supports Applications, Software Updates and <<IPUApplications>> (as described in this document). It

also offers advanced reboot control with file operations exclusions and scheduling.

• It has the same look and feel as Software Center – the end user will feel <<At home>>.

• All Configuration is done from a CM Console extension per Collection.

• It supports running / scheduling a Maintenance cycle when it installs all required / pending

applications and updates, during such a cycle it will reboot, as necessary.

• The Deployment Scheduler requires DotNet 4.7.2 or higher.

To engage in an Application or Software Update deployment the deployments scheduling must allow

for some elasticity. There must be a significant gap between start time and deadline and the

application must also be deployed as REQUIRED. In this rather brutal example, the installation can

be scheduled freely for ~9 years.

Appearance

Installation

Locate the installer.

Deploy like any other msi using the silent switch:

msiexec /i “DeploymentScheduler 1.0.21034.01.msi” /qn

13.2. IPUApplication deployment

If you have adhered to the instructions above the only modification necessary is to adjust the

<<IPUApplication>> scheduling, we need to create a <<Time Gap>> by moving the deadline into the

future.

In this example we allow the end user until June 13th, 2020 to at will schedule and run the upgrade

to Windows 10 20H2.

This will be reflected in the Deployment Scheduler as shown here:

13.3. Configuration Deployment Scheduler

Requires DotNet 4.7.2 or higher

Install the ConfigurationEditor CM Console extension on site server or any computer with the CM

Console previously installed.

Next time you open the console you will find a new node on the Administration tab:

Settings

This document focusses on IPU, there will be a complete manual for the Deployment Scheduler

available soon, possibly also a short film. But this should get you going (perhaps after some trial and

error)

Button Function

Deploy Deploy all settings to a Collection

Load Read back all settings from a Collection

Default Load default settings, us-EN only so far

Open Open settings from file.

Save Save settings to file - Backup.

When settings are deployed to a Collection it will require a machine policy request before the Client
adheres to them. The Deployment Scheduler itself checks in wmi (on client) every 30 minutes, so it
can take a while.

14. DRIVERS - STANDARD

The <<IPUInstaller>> will add drivers to the auto generated SetupConfig.ini file if present in the
following location when the upgrade starts:

%ProgramData%\~IPUDrivers

One way is to create a Driver Task Sequence and execute it in advance of the IPU Application. This is
actually very simple.

Create a custom Task Sequence, add one “Download Package Content” per model with appropriate
Wmi query, for example (‘HP EliteBook 2570p’):

This way pre-existing packages can be re-used. When the <<IPUInstaller>> starts it will detect the
driver folder and invoke them in the IPU.

15. DRIVERS – ADVANCED

It is possible to use a compressed driver package as an alternative to re-using pre-existing packages.

<<IPUInstaller>> can expand drivers compressed as a .wim file. We will not dive in to how to create
the wim but you can use several tools available on the internet or dism.exe

Dism /Capture-Image /ImageFile:"<TargetLocation>\IPUDrivers.wim" /CaptureDir:"<SourceFolder>"
/Name:IPUDrivers

The key here is that the resulting file must have the exact name <<IPUDrivers.wim>>

Create a package from the .wim file and add it to the custom TS exactly as you would add a standard
package.

The only other difference is that you must choose to download to CCMCACHE.

The <<IPUInstaller>> will with this approach sniff the ccmcache for files named <<IPUDrivers.wim>>,
if more than one is found (possible update) it will pick the one will the latest file date, expand it to
%ProgramData%\~IPUDrivers and add the path to the SetupConfig.ini file.

16. PROCESS

1. A candidate computer is put in the <<IPU Windows 10 20H2 x64>> collection.

2. The computer attempts the upgrade, scheduled or not.

3. If the upgrade succeeds, the hardware inventory in combination with our collection queries

will move it to the succeeded collection.

4. In case the upgrade fails, the same process will instead move the computer to the failed

collection. At this point we can examine the extended <<IPUStatus>> node in Resource

Explorer, this will not always be enough, but will in many cases point us in the right

direction. Once the cause of failure, be it an outdated driver or worse, has been remediated,

we can reset the failure flag on the machine by running the <<IPU-Reset>> PowerShell script

remotely on it. This will result in the hw inventory and collection queries moving the

computer back to the deployment collection for a second attempt.

5. Ultimately all computers put in the deployment collection will magically migrate to the

succeeded collection.

17. ISSUES

Non so far

18. FINALLY

18.1. Support us supporting you.

All tools published are free to use, some of them could however be further developed and better

maintained, this is not always an easy task, we must always focus on paying customers which means

all work is done on spare or private hours.

Based on this we expect well doing, commercially driven companies to sign up for a support deal if

you decide to use a tool like the Deployment Scheduler; this will not only grant you faster and

dedicated support it will also allow us to spend more time maintaining these tools, something we all

can benefit from.

That said, the Tools are free, support is not.

Please contact us for an offer at: About us (onevinn.com)

https://www.onevinn.com/about-us

18.2. Code

If you have made it this far, you might be interested in checking out the code behind the

DeploymentScheduler:

Josch62/DeploymentScheduler (github.com)

https://github.com/Josch62/DeploymentScheduler

